

Genetically Engineered Models: Use of a 2D Barcode Mini Tag for Identification of Mice in an Automated Colony Management System

Steve Sansing

Sr. Client Portfolio Manager Research Models and Services -GEMS

INTRODUCTION

To keep up with the growing complexity of managing GEMS animals, many labs are looking at automated systems to maintain data integrity and efficiency in breeding and generating study cohorts. We have continued to look at various identification methods which help us ensure the correct animals are shipped, mated, and euthanized. We evaluated current identification methods which are available to achieve this level of quality, meet our IACUC standards, and are also cost-effective. Our facilities currently use an Internet Colony Management application ICM[™] which drives our colony management and embryology services. This is a web-based application where technicians input data using tablets, RFID, and keypads to manage our breeding operation. In collaboration with RapID Lab, a mini tag was developed to fit our operation needs. This ear tag has a 2D barcode and comes in an assortment of 10 colors. The current size of the mini tag which is 3.5mm enables us to identify a mouse at a minimum d12 pre-weaning. We have incorporated the barcode functionality into our current system and the various colors provide the technicians with a secondary method of identification helping to efficiently identify the correct animal. Integrating this mini-tag into our colony management system has reduced errors and increased efficiency. This presentation will go through the attributes of the RapID Lab mini tag and show how this can be incorporated into a colony management system for mice to fully automate data collection for a breeding operation and maintain the highest level of animal and sample integrity.

Provide superior quality in the marketplace by ensuring clients receive the correct animals for research

Are there identification systems that are efficient to execute and meet our IACUC standards?

What tools are available to achieve this level of quality?

Provide superior quality in the marketplace by ensuring clients receive the correct animals for research

Are there identification systems that are efficient to execute and meet our IACUC standards?

What tools are available to achieve this level of quality?

ANIMAL IDENTIFICATION IS EVOLVING

To keep up with growing complexity, labs are shifting from manual to automated ID systems.

Manual systems

(i.e., tattoos, ear notching/punching, toe clip, metal ear tags)

- Risk of compromised study data
- Unnecessary labor costs

5

- Under-utilized lab technician and PI time (deciphering data)
- Challenges in reading marks or tags
- Noisy data created by need for more animals per study group
- Costs of replacing compromised test animals
- Animal welfare concerns

Automated systems

(i.e., 2D barcode, RFID microchips, Transponders)

- Ensures administration of correct treatments
- Collects intended measurements
- Data storage is unified and stream-lined
- Increases technician efficiency
- Avoids significant hidden costs associated with manual methods
- Accurate

RAPID TAG[®]

6

Multiple colors allow rapid, secondary (visual) identification without scanning or disturbing caged animals

Humane (painless), secure, lightweight design

100% MRI and autoclave compatible

Made in the USA

2-D Matrix Barcode

- Easily and instantly scanned
- 100% reading accuracy
- Automated data collection
- Millions of unique codes

Biologically-inert, medical -grade, advanced polymer material. Virtually indestructible.

Quick and easy to apply or remove with nominal training

BENEFITS OF RAPID TAG

Benefits

- Unique Identification of each animal
- Process integrated within ICM application
- Traceability of animal use through 2D barcode during all touchpoints
- Secondary visualization using color coded tag
- Rapid scanning/identification process

Cost Savings and Project Improvements

- No animal identification issues since each animal has unique 2D barcode
- No reduction of cohort delivery due to incorrect animal ID or readability of ear marks.
- Correct shipment of animals
- Time savings in identifying animals for shipment, mating, cage move or euthanasia due to secondary color code of tags
- Use of RFID beneficial for ID import into excel through scanning
- Shipping crate reduction since animals would not need to be separated due to genotype
- Animal Welfare Benefit due to co-housing of animals of various genotypes.

KEY COMPONENTS

RapID Tags

QR code

Scanner

Removal Tool

Holder

Bracket

Tablet

Applicator Tool

Battery Pack and Dongle

Keypad

Provide superior quality in the marketplace by ensuring clients receive the correct animals for research

9

Are there identification systems that are efficient to execute and meet our IACUC standards?

What tools are available to achieve this level of quality?

INTERNET COLONY MANAGEMENT

Colony Access, Data Integrity, and Visibility

• Data driven processes help to decrease errors and remove non-value-added steps

10

- Internal Systems are integrated to enhance exchange of information between departments (i.e., No transcription)
- 24-hour access through multiple devices (i.e., laptop, tablet and/or phone)
- Data captured in the vivarium is provided real-time through secure customer portal
- Monitor project progress at a high level, right down to specific animal details

CUSTOMER INTERFACE

Internet Colony	Management.	Home Projects		Requests		Den	noUser Wilmington US EST Change my Info Logout
Projects > CR/C Colony Ma	Customei anagement - Projec	r/Training ct Details · Incoming Shipments	- Outgoi	ing Shipments	Health Reports	• Task Requests • Embryolo	gy Census
All Is	olators CR/Cu	stomer/Training				Genetic Goal – (ABCXYZ) Bree Shipping Goal – (ABCXYZ) 20	d HE x HE HO females every
Gender:	(Both Genders)	Status: (In Colony)	Filter	more filters	i		clear filters
Euthan	nize Ship	Custom Mate		Group			Import Genetic Results Export to Excel
List of ani	imals (Animals: 15 Lit	ters: 1)					
	Cage Isolator	Animal/Status Gender	Color	Age (d/w)	Generation/Parer	nts Line/Zygosity	Mate Date
	1 1	N=6 į Active		1d	N5F3 100 x 101	ABCXYZ T.B.D./T.B.D.	
R	1 1	100 į Active 📥 M	Brown	149d	N5F2 50 x 51	ABCXYZ HE/HE	05-Jun-2012
	1 1	101 į Active 📥 F	Brown	149d	N5F2 50 x 51	ABCXYZ HE/HE	05-Jun-2012
	2 1	102 į Active 🏊 M	Brown	88d	N5F3 100 x 101	ABCXYZ WT/WT	
	2 1	103 į Active 橅 M	Brown	88d	N5F3 100 x 101	ABCXYZ HE/HE	

Gende	2 3 7 8 12 13	4 5 16 11 9 10 21 22 14 15 26 21	7 18 19 2 23 24 7 28 29	20 25 30	less filters		Filter Clear filter	5	
Age Comr	ments	d w	to	d w	♥ Mated ♥ Not Ma Line/Muta	Withou ated With p ation/Zygosity (set fil	ut task ohenotype (ter)	-	
Euth	anize	Ship	Custom	M	ate	Group Impor	t Genetic Results		🕱 Export to Excel
List of	animals (An	iimals: 34 Litters: 1))						
	Cage	Animal/Status	Gender	Color	Age (d/w)	Generation/Parents	Line/Zygosity	Mate Date	Comments
	4	9 į Active	F .	Black	445d	N0F0 not defined	CBE-11 KI HO	(S) 28-May-2013 (E) 02-Nov-2013	
	4	10 į Active	F.	Black	445d	N0F0 not defined	CBE-11 KI HO	(S) 28-May-2013 (E) 02-Nov-2013	
	4	N=2 1 Active	-		26d	F1 3 x 9, 10	CBE-11 KI HO		
	5	53 i Active	F .	Black	83d	F1 2 x 7, 8	CBE-11 KI HO	(5) 02-Nov-2013	
	5	63 i Active	🦱 М	Black	79d	F1 1 x 5, 6	CBE-11 KI HO	(S) 02-Nov-2013	
	5	71 i Active	F .	Black	69d	F1 3 x 9, 10	CBE-11 KI HO	(5) 02-Nov-2013	
	7	81 i Active	🣥 м	Black	41d	F1	CBE-11 KI		

苎

TECH INTERFACE

				Workload				
All Tasks	>		Location	Isolator Name	Size	# Cages	# Animals	# Tasks
C Euthanasia	<u>,</u>	A	16-B(CC-1)2	CR/Customer/Demo	6 foot - mouse	3	12	2
	· ·		16-B(TT-10)1	CR/Customer/Training	3-foot mouse	3	9	2
			16-B(JJ-1)2	CRL/Client Demo	6 foot - mouse	10	28	1
Scan Isolator			16-B(AA-20)1	CR/Project/Demo	15 Cage - mouse	6	16	1
Samples								

Provide superior quality in the marketplace by ensuring clients receive the correct animals for research

Are there identification systems that are efficient to execute and meet our IACUC standards?

What tools are available to achieve this level of quality?

TAGGING PROCEDURE and TOUCHPOINTS

Process

- At weaning or sampling RapID tag is applied
- Animal is scanned into ICM
- Confirm 2D barcode is accepted
- Color of tag is verified
- Biopsy collection is performed

Touchpoints

Validation on Specific Animal Tasks Requires Scanning

- Mating
- Clinical Observation
- Euthanasia
- Shipment
- Cage move
- Sampling/Genotyping

VALIDATION

Weaning

Please SCAN the Animal RFID	nimal Code	RFID						
PP6274								
	1	-	M KK4	52 938	Active	Black	ABCXYZ	21 d HO / T.B.D.
	2	-	м	53	Active	Black	ABCXYZ	21 d HO / T.B.D.
	3	-	М	54	Active	Black	ABCXYZ	21 d HO / T.B.D.
	4	-	М	55	Active	Black	ABCXYZ	21 d HO / T.B.D.
								Cage 9

l M 5 52 Active Black ABCXYZ 21 d 1 HO / T.B.D. M 53 ABCXYZ Active Black 21 d 2 HO / T.B.D. 54 Active Black ABCXYZ 21 d М 3 HO / T.B.D. 55 Active Black ABCXYZ 21 d М 4 HO / T.B.D. Cage 9

 \checkmark

VALIDATION

17

Shipments

HO/T.B.D.

Cage 9

DATA SHARING

Cage cards are generated including both tag number and a picture of the color tag as secondary identification

Having the color noted on the cage card provides immediate identification of animals. This can be used to separate animals quickly upon receipt or removal of specific genotypes if animals are cohoused. The tag number indicates the unique ID of the individual animal.

Identifier	Date of Birth	# of Days old	RFID	RFID Color	Gender
16397	11/30/2022	321d	RF9376	Blue	Male
16396	11/30/2022	321d	2220AL	Black	Male
16479	12/22/2022	299d	1663AJ	Gray	Female
16490	12/27/2022	294d	LT7579	Orange	Female
16534	1/12/2023	278d	BJ4895	Yellow	Female
16532	1/12/2023	278d	6342AO	Lavender	Male
16749	4/20/2023	180d	WL0136	Green	Female
16882	5/21/2023	149d	5262AN	Red	Female
16881	5/21/2023	149d	3682AN	Black	Female
16880	5/21/2023	149d	RD7086	Blue	Female

	1A		С С	RL/ rl/Si	/ AA mith/rAA V	VILM					
ID #	RFID	Sex	Clr	Mark	DOB	Gen		Parents	Lir	ne/Zygos	ity
14553	KR8255	F	BL	n/d	13-May-2021	N1F13	1370	1 x C57BL/6E		AAHE	
14554	VC6594	F	BL	n/d	13-May-2021	N1F13	1370	1 x C57BL/6E	1	AAHE	
14555	PX3468	F	BL	n/d	13-May-2021	N1F13	1370	1 x C57BL/6E		AAHE	
14556	9125AA	F	BL	n/d	13-May-2021	N1F13	1370	1 x C57BL/6E	1	AAHE	

ID # RFID Sex Clr Mark DOB Gen Parents Line/Zygosity 14558 7085AA F BL n/d 18-May-2021 N1F13 13709 x C57BL/6E AAHE 14559 2097AA F BL n/d 18-May-2021 N1F13 13709 x C57BL/6E AAHE 14573 KR8257 F BL n/d 01-Jun-2021 N1F13 13703 x C57BL/6E AAHE
14558 7085AA F BL n/d 18-May-2021 N1F13 13709 x C57BL/6E AAHE 14559 2097AA F BL n/d 18-May-2021 N1F13 13709 x C57BL/6E AAHE 14573 KR8257 F BL n/d 01-Jun-2021 N1F13 13703 x C57BL/6E AAHE
44559 ■ 2097AA F BL n/d 18-May-2021 N1F13 13709 x C57BL/6E AAHE 14573 ■ KR8257 F BL n/d 01-Jun-2021 N1F13 13703 x C57BL/6E AAHE
14573 KR8257 F BL n/d 01-Jun-2021 N1F13 13703 x C57BL/6E AAHE
14575 PX4293 F BL n/d 01-Jun-2021 N1F13 13711 x C57BL/6E AAHE

SUMMARY

Ensuring the right animals go into RESEARCH

